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ON LIMITING EMPIRICAL DISTRIBUTION FUNCTION OF
THE EIGENVALUES OF A MULTIVARIATE F MATRIX *
F X .
C Z. D. Bai, Y. Q. Yin and P. R. Krishnaiah

ABSTRACT

In this paper, the authors derived an explicit expression for the
& limit of the empirical distribution function (e.d.f.) of a central
i! multivariate F matrix when the number of variables and degrees of
.
E freedom both tend to infinity in certain fashion. The authors also
extended the above result to the case when the underlying distribution
is not necessarily multivariate normal but the first four moments
exist., The limiting distribution is useful in deriving the limiting
distributions of certain test statistics which arise in multivariate

analysis of variance, canonical correlation analysis and tests for the

/
A oy - '
E { ) i a

equality of two covariance matrices.

Keywords and Phrases: Canonical correlation analysis, empirical
distribution function, large dimensional random matrices, limiting
distribution, multivariate analysis of variance, multivariate F
matrix.

*This paper is a revised version of the CMA Technical Report No. 84-42,
In this version, we added Section 5 which gives some results when the
underlying distribution is not multivariate normal.
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1. INTRODUCTION

'y

! Various test procedures in multivariate analysis are based upon

b

E certain functions of the eigenvalues of random matrices. A considerable
itfz amount of work was done in the literature on the asymptotic distribution

; theory of these statistics when the sample size is very large. But,

many situations arise in multivariate data analysis when the number of

variables and the sample size are both very large. So, there is a
great need to investigate the distributions of various functions of the
eipenvalues of large dimensional random matrices. Distributions of the
eigenvalues of large dimensional random matrices arise (e.g., see

Mehta (1967)) in nuclear physics also.

Some work was done in the literature on the limiting empirical dis-

tribution function (e.d.f.) of large dimensional random matrices. Here,

we note that the e.d.f. of a random matrix 2: px p is defined as N(x)/p
where N(x) denotes the number of the eigenvalues of Z which are less than

or equal to x. The e.d.f. (also known as spectral distribution) of Z is
useful in deriving the distributions of certain functions of the eigenvalues
of Z.

Now, let S1 : p X p be distributed as central Wishart matrix with m degrees
of ftreedom and E(Sl/m) = ]p' Also, let p and m both tend to infinity such that
lim(p/m) = y > 0. Then, it is known (see Crenander and Silverstein (197?).
Jonsson (1982} and Wachter (1978)) that the e.d.f. Fm(x) of the eigen-

values of Sl/m tends to Fy(x) where Fy(x) i{g the distribution function with

density function given by

. /(x - a)(b - x)
:', f (x) - 21rxy
. y

a<x <b

0 otherwise
wvhere a = (1 - /;)2, and b= (1 + /;)2 and 0 <y < I; for ]l <y <=, Fy(x) has
mass | - (1/y) at zero and fy(x) on (a,b). Yin and Krishnaiah (1983b) showed

that the spectral distribution of the sample covariance matrix has a limit when

the underlying distribution {s isotropic and y < 1.
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Yin and Krishnaiah (1983a) showed that the spectral distribution of SlT/ m
tends to a limit in probability for each x under the following conditions:

(a) T is a symmetric, positive definite matrix and G_(x) is the e.d.f.
of the eigenvalues of T, P

(b) SI and T are independent of each other,

(¢) lim(p/m) = y exists and finite
p,mrre

-1
(d) kadG {(x) — H, exists in L2 for k=1, 2,... and IH 2k @,
P k 2k

Yin and Krishnaiah (1984b) extended the above result to the case when Sl is the

sample sums of squares and cross products matrix based upon observations from an

isotropic population.

Now, let S.: pxp and S

1 2

with m and n degrees of freeduom and H(Sl/m) = E(Szln) = Ip. Then, the distribu-
tion of nslsgl/m is known to be the central multivariate F matrix., Applying the

result of Yin and Krishnaian (1983), Yin, Bai, and Krishnaiah (1983) showed that the

limit of the spectral distribution of the central multivariate F matrix exists
when p/m-+y exists and (p/n) — z< % as p>=., Silverstein (1984b) showed the
validity of the above result even for the case ’ < z < 1 by making a minor
moditication in the proof of Yin, Bai, and Krishnaiah (1983). Yin and Krishnaiah
(1983a)gave an expression for the moments of the limit of the e.d.f. of the
eigenvalues of SIT/m. Starting from this expression, Silverstein (19843 derived

an explicit exprussion for the limit of thee.d.f. of the eigenvalues of themultivariate
F matrix. Wachter (1980) had earlier obtained the explicit expression by using a
different method. 1In this paper, the authors give an alternative derivation of

the above method. The authors also gave explicit expressions for the moments of
thc above limiting distribution and these expressions are not known in the
literature. Finally, the authorsproved the existence of the limit of the spectral
distribution of nS$ Sz—lh1when the underlying distribution is not multivariate

1

normal but the first four moments exist.

.
: pxp be distributed independently as central Wishart matrices#
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2. PRELIMINARIES

In this section, we give some results which are needed in the sequel as

well as a brief review of known results on limiting spectral distribution

of a multivariate F matrix.

2
Lemma 2.1 Let z ¢ (U,1), a' = (1 - fz")z and b' = (1 +v2)°. 1f 0 < [t| < a',

then

1 b 1 - ' [ 11 -_1__ - _ - _ 2 _ !i
7z L. s (k- -0 dx =gl vz -t - {0 -2 - 07 - bz}
(2.1)

Prool Making the transformation u = [2x =(b' + a')]/(b® - a') in the left

side of (2.1), we obtain

b’ O 2.%
] 1 5, o ('- a) (1 - u’) .
R(t) = 2nz Ia' (x = t){(x - ah ' - 0} idx 4nz J—l u+ A du ]
(2.2) ]
where 4 = (b + a' = 26)/(b' - a'). 1t is known (see Jonsson (1982)) i
{
that R(Q0) =1, So, for any r ¢ (0,1), we have %

] 2. %
| f - uDHdu g (2.3)
a/r -1 u + ((1 + r)/Zv/; )

Now, let & = (1 + r)/2'c. Since &4 > 1, the condition r e (0,1) 1s satisfied.

el adinfndiunds

So, using (2.2) and (2.3), we obtain

2 2 L
R(t) = (b' = a")(b - Ja° - D/bz = [l +z -t - {((1 - 2z - 1¢t)" - 4tz}’]/22.
(2.4)

Lemma 2.2 For any nonnegative integers m and v, we have

w2l s .
LoDy <‘“> <§: _i> - oY <:> : (2.5)
120
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Here <m>is defined to be zero when m < w.
w

Proof If m = 0, the proof is trivial. We now prove the result for m > O by

bbb Aot o

induction. Suppose the result is true for a fixed value of m. Then, we have

o
: \
> [wg’ll(_l)ﬁ m+ 1 2m+2 =22 mtl L rm + m \} 2m+2-2
- =0 < m-w+ 2 )" X -1) ! 2 - LN2m+2 - w
. L=0 N/
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So the result follows.,

Lenma 3

J @y + g)dy < bay - 285 + (4pB + 2a8)y
. cy o u2N372 T + const.
G+ 8y - oyd) G2 rbye) (¢ + sy —cxD) T2 )

BORAMASEE S

(2.6)

The above lemma can be verified directly by differentiation.
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3. MOMENTS OF THE LIMITING SPECTRAL DISTRIBUTION
OF A MULTIVARIATE F MATRIX

Let Fy z(x) denote the limit of the e.d.f. of the multivariate F matrix
?

as defined in the preceding section. Also, let {Ekrnk=ldenote the moments of

F (x). Then, from Yin and Krishnaiah (1983), we know that

bEXS
k-1
w/k 1

E.= 1Y < >———— B(k,w) 3.1

k2o W/ (w+ 1)
where

(w + 1)! " Me-w
B(k,w) = Z ; 7 H «eo H - (3.2)
ot nk—w' 1 k-w

and the summation in (3.2) is over all possible values of Dyseeenny o subject
to the restrictions n1+ e +nk—w = w+ 1 and ny + n, + o0 +(k - w)n.k_w = k.
Also, H = E(x *) for i =1, 2,... where the density of x is given by

Rx'a')(b"‘x) ' 1

]
B 21Xz a’ <x<b
Sz(x) = (3.3)

0 otherwise

KN

where a', b', and z are as defined in the preceding section. For any |c| <a',

2 3
+ + . « e e e
tHl t H2 t “3 +

E(e/(x - t))

5%2 Jav[t{(x - a')(' - x)]u/(x - t)]dx

$(t)

2%
(1 -z~ ¢t)[1l - {1 - {(atz/(1 - z - £))}?*}])/22 (3.4)

by using Lemma 2.1. Since B(k,w) is the coefficient of tk in Taylor expansion

of {¢(t)}w+l, we obtain
w+l Kk R e
B(k,w) = ] wfl) 0T () eI
=0 ) j=0 J

[w+1-27) .
c k-1 - itk ke (3.5)

P, i e e d
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w+ 1 —Jj\ . .
T S AT ) # 0 implies 0 < j <w+ 1 -k <0, 1.e. j=0.
wt | ﬁd+1\ .
Noticing ) . -1)* = 0, we see that the expression of B(k,w) only contains
=0 N

/272
the terms with j > ((w+1)/2). [If I is even, then \‘g'\ = 0 implies

/
/

joo /2 2 (w+l)/2, which is contrary to j > {((w+1)/2). Thus, in the expression of

B(k,w), there are only the terms with j > ((w+1)/2) and ? being odd. Applying

Lemma 2.2, we obtain
fw/2 k ‘ . .
Sk o) = ]//:i+1 .(-l)k+l Z ? f l/2> 22J-1—wzj—w-1
=0 \7' "L j=((w+3)/2) N3

5 <w+17:j> (1 - z)wl-_]-k
k=~ ]

f"/21<w+1\ k (28 + 1)1(23 = 2 = 22)!
= 5. : 121(3 - & - !
2=U "'+1)j=((w+3)/2) J ]

w iue —i-k . Y
. (_1)22 W i-w 1(1 - z)U+1 j (k + i - ? _/

k
= 7 e+ j-w=2D!w+1) zj-v—l(l _ z)w+1-j-k
jewep 41O T = DU - 3
K - w—
= :{IA-,___(_k_f_j_"l)!(w+)) -2 k-]
Lo O W ¥ DG 5 - w - Dt
‘ (3.6)
From (3.5)und (3.6) it tollows that
k-1 k=w~1
g = w k _— (k"'J" l)! j _ _k_j
Ly ZY <w> 2 j!(j+w+l)!(k-j—w-l)!z“ z)
w=U j=
k-1

-

1=0

The k-th moment of F (-) can be easily computed from (3.7)
Y2

LEPEE. UL A TR SN P PP S U S W JIPL NP SE  N e PR e e~ =

, k=1-j
" k=i oy wfk (k +3 -1
el - 2) wéoy<w>i!(j+w+l)l(k~j-w—l)!

3.7
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4. DERIVATION OF THE LIMITING SPECTRAL DISTRIBUTION
OF MULTIVARIATE F MATRIX

Substituting the well-known formulas

w
) K=j=w=1)/§+w+1)
v t=0 \ t / w-t (4.1

into (3.7), we obtain the following by changing the order of summation:

k-1, s [(k=1-7)/2] —i-1-
Ek=‘,:zJ(1~z)k'J (k + 3= D yE 1+ pki-i-2e

j=0 t=0 (k ~F-1-26)'e!'(G+ ¢+ 1)j!

k=1 i = l)/] t-j k+j-1-2t

= V3 - ok 7 okt 3= Dy da+

=0 =0 (k+J—l-2t)'(t—_‘])' Tt + D!

k-1 /. t . . .

-3 (2t\t-:-1 2 -2 kJ/t\/kwL)-ltyt‘J(l_\Ly)k"‘J12t
=0 \ "t/ =0 \J, (5.2)
ted

Using the formulas

k+ 3 -1 2t [k -1 j\
2t =) s 2t -5/ (4.3)

s=0

in (4.2), we obtain

t
-1 2t .
- e\ __1 k -1 31 < k-
czo(t) t + 1 SZ{( < >jzoz ( z)
. . -t
» yt-J(l + y)k+J-l—2[ < \ <;__t>

k- 2t - . .
L) L)) D 65 e pne
e=o\8/ 8 v 2o s \st/ 520 \J

k-t-1-j

x yI (1 +y)

2t
k-1 t 2t-s -k-t
<t/c+lszt s \<s-t>z (-2

x (1 + y)k—s-l(y + z)s-c
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k=17, t /[, _ e :
STt B0 e e |
CzO s:O\\ . . E
« (1 + )Tl 4 yS (4.4) 1
|
-[_(k—l)/?.l k—%-S K~1 t Zt\. 1 t_s(l— )—k—t ]‘
= 1 L s+t /A s /\t t+1 - z 4
s=0 t=s . j
a1 >
x (1 + y)k s -1 t(y " Z)s
_ l(k—lZ)/ZJ k-li-ZS /k_l\ k-l-zs\ (2s)1(2s + 2¢)!
s L Kgs ) sT(3s + 0! (s + ¢ + 1)°
. zt(l _ Z)—k--t--s(1 - y)k-zs-l—t:(y + z)s 4.5)

_L:‘
Define a random vector (U V) where the marginal density of U is % (1 - x2) -I(O 1)(:-:)

and the conditional density of V given U = X is

vl g )1/ 1/2 (v). (4.6)

| - xz [ (1-x=) , ((1-x2) ] 1

It iv ecasv to see that

(2s)!1 (2t + 2s)! 4-25-t
a!'(Zs + t)!(s +t + 1)! 4.7

2s.,2t+2s
TV

E{U } =

and that

EUJZs+1V2t+23+1} - 0.

Hence, trom (4.9), (4.7) it tollows that

S
k=1 k-1-5 /) _ 1> ko1-s) e kee- 2
K - E ) zo ( s < t z (1 - z)

E =
s=0 t
s
x (1 + y)k—s-t-l(y + z)2 USV2t+s
2 —\ k-1
-1 I{(l by o+ iRy Ay * z) (4.8)
(1 - 2) vl - 2

Now, we coumpute the distribution of
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AVZZ 4UV vy + 2 ?
l+y+l-—z+ /(1‘2). (4.9) .
vl - 2z )
Let Wy o= UV and w, = VZ. Then we can easily show that the joint distribution Q
‘
4
of (wl, w2) is ]
TR R N
[wl+w2f;w2J 4
where I[a(é] takes value 1 if a < B is true and zero otherwise. Applying
- 2 /9 J
Lemma 2.3, we can compute the density of &[:(y+2)l/"wi/(l-2)l/“ oz ow S (1=2 ]
as rtollows:
Let a4y < 9y be the roots of the equation
a-2? 2 12z (o pntal=-z2 (4.10)
2z 9 TTeG+ =y ‘¥ 49 4z 4

l62

AN

in the variable q. Let a =1, B = 0, .= {(1 - z2)/16(y + z)}xz, § = ((1-z)/42) +

k
4
((1 -2)x/8(v+2z))- and - = (1 =-2)/16(y+2z). Then
1 -2 2 q
A= YA - - ———
e T _
1l - 2 1 - 2
A, = -
p = ko + 206 = L2y Lot
<
b, = 52 4 byp = (1 -2)"[y +z + xz] )

lbzz(y + z)

/2

By Lemma 2.3, we get the density off$wl(y+29/2 /(l—zﬁ' B +f$zw2/(l-2)i is as

riven below:

WL NI . UG . . J

e 92 -3/
- _1l V1 -2 (1 - z)2 1 - 2 1 -2 , 2
L0 =7 2 W 9" T+ X~ 9 da
W'y +z 16z q y

5/2 42 |
_ (- 2) Ay * 4pa |
64n22/y + z A3 (1 - 2) _ 1 - 2 (x - )2 q (4.11) ;
4z 1 l6(y + 2) *-q i
In proving (4.11), we use the formula fx+y(X) = J f(x~q,q) dq where fx+y(') and f(.,.) %
are the densities of x+y and (x,v) respectively. Note that the integrand in the :

integral in (4.11) is zerou outside the interval [ql,q?] by the indicator factor.

Since q] and q,, are roots of equation (4.10), we have



Here

5/2 (8

(1 -12) ]

+ 8,q)4z R¥)

From (4.10), we can compute

t.(x) = I B
1 64ﬂzz/; + 2z 3 4 z) 4 q,
2 4 =4 - )
-t ) G- (4.12)
64"22/;f;—z &y (1 - 2) 9,9,
(1-2) 1-2 N2 2 1-2 2 . _ '
Je note that "z q “16Gy+2) (x=q) ( o q)~ tor g q, or a,

3 a < x < b.

,
vl - 2z

24(y + 2z + xz2)

N /—xz(l - 2) + 4xz+ 4(y + 2)

{7 2.2
- i 22
[‘ g = ﬁzj(y + Z)(-xz(l - z) + 4xz + 4(y + 2)) (4.14)
4y - a; TR

4
: From (4.12) - (4.14), it follows that
€ 32 1m0 (e (x2(1-2) /6 (y+2) ] /(; il s i et e
P fl<x)=(‘2)7 Rz (y+z — —

b4mz"vy + 2z 1 - 2%y +2z+xz2]1(0 - 2) z°x~

. (4.15)

Recalling (4.9), we obtain

. , . .
- P I DI a2t o o

2 ST
From this we can casily obtain the density of |1 + y + tv—z' + GUVy * 2 (1 - 2z)
¢ 1l - 2
-1
/ 22 2
L (k) = (1 - 2)(-(1 = 2)"x" + 2(1 + v +z - vz)x = (1 - v)
¥ 2u(xz + vy)
(1 - z)zf(x - a)(b - x)
- 4.16
2r(xz + y) ( )
- ST Y arra——
f where a = ( Ly roe > yz) and b = (1 + vy z 3 yz ) .
- (1 - z) (1 - 2z)
(] Since fl(x) # 0 if and only if equation (4.10) has two different roots,

we find by checking the steps of computation that fz(x) # 0 if and onlyv if

(4.17)
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Now, let

(1 - 2)W(x=-ab-x)
2nx(y + xz)

fZ(X)
x(1 - 2) -

if a <x < b,
t(x) =

0 otherwise. (4.18)

In (8], it is shown that the distribution Fy.z is determined by all its moments.

From (4.11)(4.12) it follows that

x
Fy.z(x) = YI{(O’m)}(x) + [_mf(x)dx. (4.19)
where Y= 1 - J f(x)dx.

b
Finally, we only need to compute the integral J f(x)dx. If we set
a

u= [2x - (b + a)]/(b - a), we get

b b b -
I = j f(x)dx s -2) [I Y (x - alfb - x) dx - z/(x - a)(b - x) dx
a

2ny a Iy (z(x + v))
A-om-a [(f -, Pli-d?
= ———— du - du |,
4y u+ A u+ A
‘ -1 1 a 2
b + b+ a+ (2y)/
where Xl == 3 and XZ = ab -(‘y) z, Using (2.3) we get

_ (1 - 2)(b - a) _fi2 - /2
= iy [(xl A\ 1) (., A5 1)]

_ 1/2 —_
= 2y 2 [(z%ab + zy(a+b) + b5 /z - vab -G/2)]
=(1 -2 y + 2 _ 11 - Y[ A

2y z(l - 2z) 1 -z 2

=-21—y[1+y-|1->'|1

1 if0<y <L
1
- if >1¢
y y
Hence
0 if 0 <y < 1.
Y’
1-1  if g1,
y z

Substituting this into (4.19), we get the expression of Fy.z(x).
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5. LIMITING DISTRIBUTION WHEN THE UNDERLYING DISTRIBUTION IS NOT
MULTIVARIATE NORMAL

In this section, we prove the existence of the limiting spectral
distribution of the random matrix F when the underlying distribution is
not multivariate normal but the first four moments exist. We need the
following difinition and lemmas in the sequel.

Definition 5.1. A random vector x' = (xl,..

.,xp) is said to be M - PD
(projection distribution) bounded if there is a positive constant M

such that for any constant unit vector a' = (a

3 10 .,ap) and any x > 0

plla'x! <« x] < Mx (5.1)

Definition 5.2. A sequence of random vectors X of order p(n) x1 is

said to be M - PD bounded if there is a common constant M such that each
vector X is M - PD bounded.

Example 5.1. 1If x is distributed as a multivariate normal with mean
vector O and covariance matrix I, then x is \/%T— PD bounded.

Example 5.2. Let x be uniformly distributed on the p-dimensional sphere
with center at zero and radius vB} p > 3. Then x is 2 - PD bounded.
Lemma 5.1. Let x beanM - PD bounded random vector and let y be a
random variable with E(1/[y|) < ». 1In addition, we assume that y and x
are distributed independent of each other. Then y x is ME(1/ly]) - PD

bounded.

The proof of the above lemma follows immediately.

Lemma 5.2, If A: px*p is any nonnegative definite matrix and ~ is the largest

eigenvalue of A, then

- 2 1 1/2
xtax-ytay L2 ¥ eyl Ze T2 eyl Ilyayll?

(5.2)

where Hx!!denotes the Eucledian norm of x.

The above lemma can be proved by applying Schwarz's inequality.
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f Lemma 5.3. If O < r < 1/2, then the unit ball in RP can be covered by :
; balls of radius r in such a way that the number of these smaller balls .
- 2

" does not exceed C exp{(p/2) log(8re/r )} where C is a constant.

The proof of the above lemma is given in Yin, Bai and Krishnaiah

(1983).

Lemma 5.4, Let {x

1,...,xp,...} be a sequence of random vectors which are

M - PD bounded with a common M and x_ is of order px1l. Also, let

Xpl""’xpn be a sample of n = n(p) independent observations on xp.

Then, for any a: px1 and € > 0

n

Pl ) (a'x .)2 <nel < € exp{ 2 log (WeM2 €/2); (5.3)
it . ~pi - - 2 1
i=1 .
Proof. Let Y, = a'x ., for i =1,2,...,n. Then Y,,...,Y are i.i.d. i
—_— i ~ -.pi 1 n
random variables and .
v = ey | < ox] <omx (5.4) :
But, we know that )
[n/2]
2 2 2 2 .
PIY]+...+Y  <mel <Pl ) (Y5 . + Y5} < ne] (5.5) )
k=1 :
where [a] is an integral part of a. We have
X
PIY2+v2 < x] = | vOEIy)AV(S) .
172 2 i
0 X J—— — ~
<M f Vx-y dV(vy) 4
5 0 x ;
< %? J Vy/(x-v) dy, (5.6) y
0 *
But ]
X 4
1/2 _ "X )
f fy/ =)} " dy = 5= (5.7) ]
0
So
2 2 WMZ
—— x. .8
P[Yl + Y2 < x] < 7 X (5.8)
4 i PIPRR TR\ I gt ot \i-" ; .l'::n‘ .':&-":l::;‘--:h & =~ A L gy . Y Y
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N let 2. = Y2 + Y2 Then Z Z are i.i.d. nonnegative
Now, K k-1 i 10y .i.d. nnegati
random variables a = [n/2] and
P(z) < x] < M*x (5.9)

& 2
where M*™ = M /4., Now let
= +...+ . .
Fa(x) P[zl za < x] (5.10)
We shall now prove, bv induction, that
Fo(x) < Mx%/al . (5.11)

The above result is true for a = 1. Here and in (5.12) below, we use

M instead of M* for simplicity. We will assume the result to be true fora=b.

rx
Now Fb+l(x) = J Fl(x—y)de(y)

0
b
< M J (x—y)de(y)
T

X
=M [ F, (v)dy
o P

mb+1 JX b wPtl b+l

0
So, by induction, the inequality (5.11) holds good. Now, using in-
equalities (5.5), (5.8) and (5.11), we obtain

2
n

p[Yi.+.,_-+Y < ne) < (7 M2/4)a (ne)?/at . (5.13)

Now, by applying Stirling's formula, we obtain the desired result.

We now prove the following result
Theorem 5.1. Let Fp, p=1,2,... be M - PD bounded and (p/n) =y € (0,1).
Then, for any R > 0, there exist positive constants C < =, D < =,

> 0, & > 0 depending only on y, M and R, such that

ple < <3 <R]<coPe®P, 0 <
= ="p=""= -0

where L and Tp are the smallest and largest eigenvalues of wp
P
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respectively where

n

-

X X', (5.14)
421 ~PisPi

._.
<,
1}
3

» X are independent observations on X .

and X .,...
-pl -pn -p

Proof. Let Sp denote the unit sphere in Rp. Then,

G

3

b

[

ﬁi A = min y' W vy, (5.15)

P ye S ~ P -
< p

Let r < 1/2 be a positive constant to be chosen later. According to

Lemma 5.3, let Bp(xl,r),...,Bp(xq,r) be those balls with radius r and

centers x ,...,xq which cover the unit sphere Sp. In addition, q satisfies

1
P 8ne,
q < C exp{¥ log —} . (5.16)
= 2 L2
Then we have
P(L_ < ¢, TiR)iil P(  nmin y'W y <e, ) <R).
P P k=1 yeB(xk,r)f}sp P P

r
| A
m
-
el

< R, then by Lemma 5.2, we have

' ' ' ot |
K Vp M TV Wy I W -yt
2 2
<e+ R + 2R1/21:s:1/2 = (El/2 + Rl/‘ r)
Therefore,
— 9
P(L <€, A_<R) < § P(x' W_x < (sll* + Rl/2 r)z)
P~ P k=1 - k -k

But by Lemma 5.4, we have

1/2 1/2 |2

P(fi wp X < (e + R r)")
<C exp{% log( %; Mz(el/2 + Rl/2 r)z/(l-r)z)?
(5.17)
If we take r = R-l/2£l/2, we have from (5.16) and (5.17),

. TR
P . R U T e,
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P(A <e, A < R)
p - P~

2 d
< C exp{B log 8meR +2 log(8re Me)} .
- 2 € 2 i
< ce*pP
)
for p large enough where D = (8neR)l/2(8vM2)l/y, 0 <a< 1l/2(1/y - ). !
But (5.17) holds provided that r = R-l/2€l/2 < 1/2, i.e. ¢ <e()é 2 R. ;
4

So, the theorem is proved.
Theorem 5.2. Suppose that the assumptions of Theorem 5.1 hold. Also,

we assume that Xéi = (Xil,...,Xip), and Xij’ i,j =1,2,..., are i.i.d.

e St

. . . 2 ..
random variables with common mean zero and variance g~ and finite

fourth moment. Then there exist a positive number ¢ such that

A .

lim A > e, a.s.
p—)-oo

m

VORI T S Y

Proof. Take R > (1+/§)20 and set Ap = () (K > R). According to
m=p

Yin, Bai and Krishnaiah (1984), P(Ap) -~ 0 as p > ». Thus for any

e < EO’ we have

P(U Q<€)< [ PR <e, A <R +PQA)
m>p m=p m m P

fo]

<c ) E"DP+P@A)I+0, p .
¢ L .

We will now prove that the limiting spectral distribution of

F matrix exist under conditions weaker than assumed in Sections 3 and 4.

Theorem 5.3. Let W = L XX', W = Ly ¥ where x_ = (X.,.): pxn,
- p n pp p m pPp p 1]

Yp = (Yij): px m where n = n(p), m = m(p) such that (p/n) > y ¢ (0,»),
(p/m) » y' € (0,1). Also, we assume that Xij’ Yit i=1,2,...,p;

j=1,2,...,n; t = 1,2,...,m) are i.i.d. random variables with common
mean zero, variance one and finite fourth moment. Also, let

Fp = wpw;1 where wp is nonsingular. Also, for each p, we assume that

-

PR TP T i, A I R, |



( ’Ypl) is M - PD bounded. Then, as p + », Fp has a llmlting

\ll,...

spectral distribution with probability one.

Proof. Applying Theorem 5.2, we have

el

0<e< XA <A <Ré(l+v,§;)2+l
LAy s

for sufficiently large P, with probability one. Thus, for any k > 1,

et dIRAS,

h", - @ R

f. 1 tr (W )k = ( X de (x) = ( X de (x)

= P P JO P Je n

4 where Q is the e.d.f. of W .

(] ? ’ i

According to Yin (1984), the random matrix pr has a limiting 1

spectral distribution if Wp satisfies the condition of the theorem and 1

. :

Ki T satisfies the conditions (a), (b), (c) stated on page 2 and the i

following condition:

Lk .
a.s. for k=1,2,... and Z H = ®, ]

k 2k

@y | 0 o ~ u
) P

Taking T = I, the identity, we know that Qp N, Q, a.s. where Q is

the distribution whose density is given by (3.3). Thus

~ b'
l-tr(w )k — H = J x_kg (x)dx, a.s.
P P k a’ z

Again, using Yin (1984), with T = (wp)"l, the theorem is proved. In 1

view of Yin (1984) and Yin and Krishnaiah (1983a) and the derivation in q

54, we know that the limiting spectral distribution is the same as

that given in £4.

P
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